

www.ijonse.net

A Review of Implementations of Math **Competency Oriented Teaching-Learning Systems**

Harold Braulio Chirinos Timoteo 匝 Sedes Sapientiae Catholic University, Peru

Marco Antonio Coral Ignacio ២ Sedes Sapientiae Catholic University, Peru

To cite this article:

Chirinos Timoteo, H.B. & Coral Ignacio, M.A. (2024). A review of implementations of math competency oriented teaching-learning systems. International Journal on Studies in Education (IJonSE), 6(4), 575-602. https://doi.org/10.46328/ijonse.244

International Journal on Studies in Education (IJonSE) is a peer-reviewed scholarly online journal. This article may be used for research, teaching, and private study purposes. Authors alone are responsible for the contents of their articles. The journal owns the copyright of the articles. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of the research material. All authors are requested to disclose any actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations regarding the submitted work.

EX NO 54 This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

2024, Vol. 6, No. 4, 575-602

https://doi.org/10.46328/ijonse.244

A Review of Implementations of Math Competency Oriented Teaching-Learning Systems

Harold Braulio Chirinos Timoteo, Marco Antonio Coral Ignacio

Article Info	Abstract
Article History	Mathematical skills are fundamental to students' cognitive and practical
Received: 07 June 2024 Accepted: 30 September 2024	development and are essential to their academic and professional success. The implementation of effective teaching-learning systems is crucial to facilitate the acquisition of these competencies, providing students with tools and methodologies that promote a deep and lasting understanding of mathematical concepts, these systems must be interactive, adaptive and designed to address the
Keywords Mathematical competencies Teaching-learning system Methods Technologies Factors	individual needs of students, ensuring that each student can reach his or her maximum potential. This paper seeks to identify the methods used in the implementation of these systems, the technology and the relevant factors for their construction. The results show that gamification and game-based learning are popular and effective methods, while block-based programming is considered to be efficient. Factors include curriculum design, interactivity and content. Among the most used technologies, scratch and virtual reality (VR) are mentioned.

Introduction

Teaching-learning is a dynamic and interactive process in which teaching and learning are combined to facilitate the development of knowledge, skills, attitudes and competencies in students. The skills acquired at this stage form the basis for advanced learning and are essential for logical thinking and solving everyday problems (Koskinen & Pitkäniemi, 2022). However, many elementary school students have difficulties with fundamental mathematical concepts, resulting in poor academic performance and negative attitudes toward the subject (Nindiasari et al., 2024).

The implementation of teaching-learning systems in mathematics is vital to overcome these challenges, adapting to the individual needs of students and fostering deeper and more meaningful learning (Zainil et al., 2024). The teaching of mathematics at the primary level has evolved with technology. Traditionally, textbooks and paper exercises were used, but with the development of digital tools, educational software, online platforms and interactive applications are now used to improve mathematical comprehension (Tursynkulova & Madiyarov, 2023). These technologies allow for greater personalization and adaptation to the needs of students, and recent studies indicate that these innovations can facilitate more effective teaching, although ongoing evaluation is required to ensure their impact in diverse educational contexts. (Yang & Lin, 2024). In this context, building effective teaching-learning systems becomes essential to ensure that students understand and apply mathematical

concepts correctly (Zainil et al., 2024). Deficiencies in this process can have a lasting impact on students' academic performance (Nindiasari et al., 2024).

The teaching-learning processes are supported by the incorporation of technologies, such as interactive software and online platforms, which have proven to be effective in making teaching more dynamic and accessible (Safitri et al., 2022). In addition, they are based on the development of innovative pedagogical methodologies, such as project-based learning, game-based learning, problem-based learning, among others (Koskinen & Pitkäniemi, 2022). The specialized literature shows a variety of pedagogical methods for the teaching-learning process, but details on the technologies used are scarce. This situation drives the search for innovative ways based on technologies to improve the educational process. A systematic literature review is proposed with the purpose of identifying the most effective methods and technologies for teaching mathematics in elementary school, including their implementation and possible limitations (Liberati et al., 2009), and uses the SCOPUS database because it is considered rigorous from the academic point of view.

24 pedagogical methods used in teaching-learning processes related to mathematics are identified, of which 8 proved to be efficient. With regard to educational technologies, 25 technologies were identified, of which 12 are shown to be very effective for the construction of teaching-learning systems. The article is organized as follows: the introduction in point one, followed by the theoretical framework in the second section and the review methodology in the third section, followed by the results and data analysis in the fourth section, culminating with the conclusions and bibliographical references.

Theoretical Framework

Mathematical Competencies in Primary School

Primary mathematical competencies refer to students' ability to understand, apply and communicate basic mathematical concepts. These competencies include skills such as numeracy, problem solving, understanding of mathematical structures, and the ability to reason logically and critically (Nadzri et al., 2023). In addition, mathematical competencies encompass the ability to interpret and analyze data, recognize patterns, and relate different mathematical concepts (Lavidas et al., 2022). Strengthening these skills is fundamental, not only to achieve academic success in mathematics, but also to enhance cognitive skills and solve problematic situations in daily life (Y.-H. Lin et al., 2023).

Teaching-Learning Process

The teaching-learning process is defined as a dynamic and interactive process in which teaching and learning are combined to facilitate the development of knowledge, skills, attitudes and competencies in students (Koskinen & Pitkäniemi, 2022), this process involves the integration of innovative pedagogical methodologies that foster critical thinking and problem solving from an early age (Dahshan & Galanti, 2024). In addition, this process is enriched with the implementation of active methodologies that promote the active participation of students in their own learning (Martín-García et al., 2024). Integrating these methodologies effectively into the teaching-learning

process is essential to ensure meaningful and lasting learning for elementary school students.

Teaching-Learning Methods

Teaching-learning methods refer to pedagogical approaches and didactic strategies used by educators to facilitate student learning in the field of mathematics (Hoang et al., 2023). These methods may range from the use of educational technology, such as augmented reality and game-based learning platforms (Liu et al., 2024), to the integration of computational thinking concepts in the teaching of fundamental mathematical concepts (Dahshan & Galanti, 2024). Research suggests that the effectiveness of these methods lies in their ability to personalize learning and foster a deeper and more meaningful understanding of mathematical concepts, which in turn can improve academic performance and attitudes toward the subject matter (Cheng et al., 2023).

Teaching-Learning System

The teaching-learning system can be conceptualized as a structured set of methods, tools and resources that facilitate the acquisition of knowledge, skills and competencies by students. This system not only focuses on the transmission of information, but also seeks to actively involve students in their learning process, encouraging participation, reflection and practical application of what they have learned (Alonso-Secades et al., 2022). The effectiveness of these systems lies in their ability to personalize learning and foster a deeper and more meaningful understanding of concepts, which in turn can improve academic performance and attitude towards the subject matter. It has also been observed that technology-based teaching-learning systems can be particularly effective in motivating students and making learning more interactive and engaging (Silva-Díaz et al., 2023).

In the context of modern education, the integration of advanced technologies has significantly transformed teaching and learning methods. The Madrasati platform is a leading example of educational technology used in several Arab countries, such as Saudi Arabia, to improve communication between teachers, students and parents by facilitating access to online educational resources and digital learning tools (Almulla & Al-Rahmi, 2023). On the other hand, "Robotics Education" has been noted for its hands-on, interactive approach to teaching STEM (Science, Technology, Engineering and Mathematics) concepts. The implementation of LEGO Education-based systems has been especially effective in creating dynamic and motivating learning environments, which has significantly improved student engagement and skills. LEGO Education has excelled at integrating robot construction with programming, allowing students to learn in a hands-on and creative way (Kyprianou et al., 2023).

Teaching and learning systems comprise several variants adapted to today's educational needs. Learning management systems (LMS) and learning content management systems (CMS) allow the administration and distribution of online courses and digital resources, respectively (Almulla & Al-Rahmi, 2023). Virtual learning environments (VLE) facilitate interaction between students and teachers in a collaborative online space (Hwang, Chen, et al., 2023). Adaptive learning systems customize the educational experience according to the needs of each student; synchronous and asynchronous online teaching tools offer real-time and delayed interaction,

respectively (Zholaushievna et al., 2022). And m-learning based systems provide access to resources and activities from mobile devices, while simulators and virtual environments offer immersive experiences for practicing skills in a controlled environment (Christou et al., 2023). These variants reflect the diversity of different teaching-learning systems, enriching the teaching and learning process.

Regarding the technologies used for the development of teaching-learning systems, such as Scratch and Digital Interactive Notebooks (DINbs), they focus on creating interactive and collaborative environments that facilitate online communication and collaboration between students and educators (Kesler et al., 2022). On the other hand, tools such as Google Meet, WhatsApp Group and Zoom Cloud Meetings offer immersive experiences and gamification that motivate students and improve understanding of complex concepts (Rati et al., 2023). In addition, technologies such as Virtual Reality (VR) and Augmented Reality (AR) provide immersive experiences that allow students to explore concepts in a more practical and visual way, which has transformed education by improving its quality and accessibility (Sandoval Henríquez & Badilla Quintana, 2021).

Methodology

The systematic literature review was conducted under the PRISMA method, which defines a review as one that uses explicit and systematic methods to collect and synthesize the findings of studies that address a research question. This approach ensures the transparency and reproducibility of the review process, allowing an evaluation of the data collected (Liberati et al., 2009). This research aims to identify and analyze in detail the factors that influence the construction of teaching-learning systems for mathematics.

In addition, it seeks to understand the methods employed in the mathematics teaching-learning processes, as well as to explore the technologies used to implement these systems effectively. Subsequently, the following objectives are established in relation to the research questions:

- Q1: What are the methods used in mathematics-oriented teaching-learning processes? O1: Identify the methods used in mathematics-oriented teaching-learning processes.
- Q2: What are the factors that influence the construction of teaching-learning systems? O2: Identify the factors that influence the construction of teaching-learning systems.
- Q3: What technologies are used in the construction of mathematics-oriented teaching-learning systems?
- O3: Identify the technologies used in the construction of mathematics-oriented teaching-learning systems.
- Q4: Which methods are the most efficient in the mathematics-oriented teaching-learning process? O4: Identify the most efficient methods in the mathematics-oriented teaching-learning process.
- Q5: Which technologies are more efficient in the construction of mathematics-oriented teaching-learning systems?

O5: Identify which technologies are more efficient in the construction of mathematics-oriented teachinglearning systems.

Search Strategy

For the search strategy, the Scopus database was used to search for bibliographic sources on the topic of study. To carry out the search, a strategy based on keywords derived from the research questions posed was used. The search string was formulated as follows: ("teaching-learning" AND (software OR system OR application OR platform OR "e-learning") AND (mathematics OR "arithmetic") AND ("elementary education" OR "elementary school")) AND (technology OR techniques OR tools OR methods OR "virtual education").

The choice of Scopus as the sole database for this search is due to its ability to cover a broad spectrum of academic disciplines and to offer a variety of sources relevant to educational research (Baas et al., 2020). In addition, it provides advanced tools to refine the search and access impact metrics that can be useful to assess the relevance of the studies found. It also highlights that in the search string the importance of keywords such as: teaching-learning, system, mathematics, technology, elementary education y methods.

Inclusion and Exclusion Criteria

To determine the inclusion and exclusion of articles in the literature review, specific criteria were established. Articles that address issues related to teaching-learning systems or education platforms, with a focus on learning in various subject areas, including mathematics, are included. In addition, articles that have students as subjects of study or addressees of the system are considered relevant. The search is limited to articles published between 2021 and 2024, ensuring that the review is based on recent research and the English language is prioritized for inclusion. On the other hand, we excluded articles that were not available, duplicated, not indexed or not research articles. These criteria in Table 1 ensure the selection of relevant and quality articles for the review.

Table	1.	Search	Criteria
-------	----	--------	----------

Inclusion	Exclusion
Database articles such as (Scopus).	Non-research articles
Articles that talk about teaching-learning systems or Education	Articles that are not accessible.
Platform, including learning in various subject areas, such as	
mathematics.	
Articles involving students as subjects of study or recipients of the	Duplicate articles
system.	
Articles from 2021 to 2024.	Articles not indexed
Articles in English.	

Selection of Studies

In the first stage, 4155 articles were selected using the search string performed on May 4. Then, in the second stage, the inclusion and exclusion criteria indicated in Table 1 were applied, resulting in the selection of 360 articles. Subsequently, the titles of the articles were evaluated in the third stage, leaving 141. In the fourth stage, the abstracts were analyzed, reducing the number to 83. Then, the conclusions, results and introduction were

evaluated in the fifth stage, leaving 68 articles. Finally, after reading the full text, 60 papers were selected. The details of the process are shown in Figure 1.

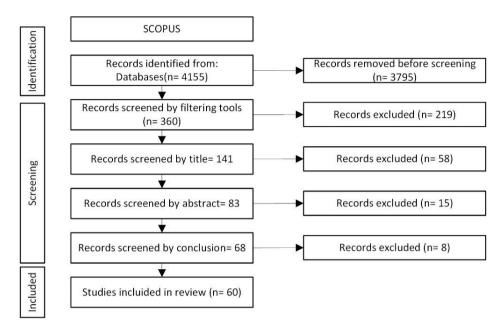


Figure 1. Flow Diagram

Data Analysis

After having selected the valid articles for the research, the relevant information is collected and organized. A quantitative analysis of the selected articles is performed, represented in statistical graphs and tables. These show the distribution of the articles according to different criteria, allowing trends to be identified. Figure 2 shows the distribution of the journals according to the quartile to which they belong.

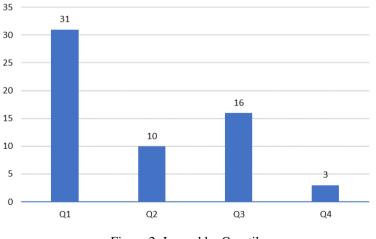


Figure 2. Journal by Quartile

Most of the publications are in the Q1 quartile, with a total of 31 articles, indicating that these papers were published in journals of higher impact and quality. In the Q2 quartile, 10 articles are counted, which are also in

reputable journals, but with a slightly lower impact compared to Q1. The Q3 quartile includes 16 articles, placing them in a journal with moderate impact. Finally, the Q4 quartile contains 3 articles, which correspond to publications in journals with a lower impact within the quartile classification. The graph shows that most of the papers in the subject of study are outstanding for their relevance and scientific rigor.

Publications by year are shown in Figure 3. In 2021 there were 5 publications, indicating an initial interest in the topic. In 2022 and 2023 the number increased significantly to 20 and 26 respectively, reflecting increased interest and scientific production. Up to May 2023, 9 articles have been published showing a decrease in the number of papers in the field of study.

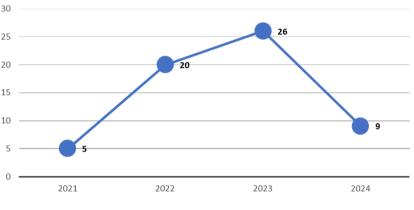


Figure 3. Articles Published by Year

Figure 4 shows the distribution of articles published by country. It can be seen that Indonesia and Taiwan have the highest number of publications with 10 articles each, followed by Spain with 8, Malaysia with 7 and Greece, China and the United States with 3 each. The rest of the countries contribute 1 or 2 articles each. The graph shows a significant concentration of articles in countries such as Indonesia, Taiwan, Spain and Malaysia, suggesting leadership in research and development of teaching-learning systems, and a greater commitment and allocation of resources to improve education compared to other countries.

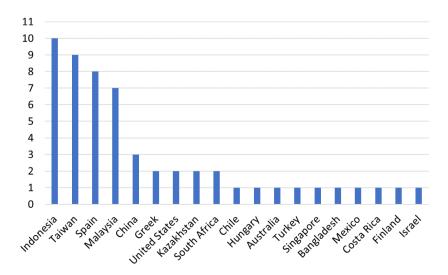


Figure 4. Articles Published by Country

Table 2 shows the number of publications by publisher. It can be seen that MDPI has the largest number with 15 articles, followed by Elsevier Ltd. with 10 articles. Modestum LTD contributes 5 articles, while Routledge and International Association of Online Engineering have 3 publications each. On the other hand, some publishers such as Asian Online Journal Publishing Group, STKIP Siliwangi Bandung, Institute of Electrical and Electronics Engineers Inc. and Academic Conferences and Publishing International Limited have 2 articles each on the topic of the study. This diversity in publication sources highlights the breadth and relevance of the topic related to teaching-learning systems in different academic media.

Publisher	No. of Publications
MDPI	15
Elsevier Ltd	10
Modestum LTD	5
International Association of Online Engineering, Routledge	3
Academic Conferences and Publishing International Limited, Institute of Electrical	2
and Electronics Engineers Inc, STKIP Siliwangi Bandung (IKIP Siliwangi), Asian	
Online Journal Publishing Group	

Table 2. Top 5 Publications by Publisher

Figure 5 shows the distribution of the articles according to the number of pages. It can be seen that most of the articles are in the range of 8 to 19 pages. The most frequent articles are those with 17 pages (8 articles), followed by those with 14 pages (6 articles) and 9, 8, and 18 pages (5 articles each). Other common sizes include 19- and 16-page articles (4 articles each). There are also 33- to 10-page publications, although in smaller numbers. This indicates that articles are concentrated between 9 and 19 pages, suggesting that research on the topic under study tends to be detailed but manageable in length.

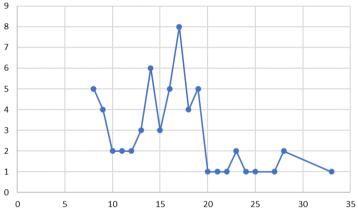


Figure 5. Number of Article Pages

Table 3 presents the 10 most cited articles taken into account by other authors when conducting research on teaching-learning systems. A most cited article is that of Hsu et al. (2022), with 22 citations, followed by the work of Pardamean et al. (2022) with 18 citations, and those of Almulla & Al-Rahmi (2023) and Chang & Yeh (2021),

both with 17 citations. Then Chen et al. (2022). These articles are seminal in the academic literature on the subject and reflect their relevance and impact on the research community. Moreover, their high citation frequency suggests that they have contributed significantly to the advancement of knowledge in the field of teaching-learning systems.

Author	Year of publication	Citation
(Hsu et al., 2022)	2022	22
(Pardamean et al., 2022)	2022	18
(Almulla & Al-Rahmi, 2023)	2023	17
(Chang & Yeh, 2021)	2021	17
(Chen et al., 2022)	2022	15
(Videla et al., 2022)	2022	13
(Cheng et al., 2023)	2023	12
(Zhussupbayev et al., 2023)	2023	11
(Kesler et al., 2022)	2022	10
(Sujarwo et al., 2022)	2022	10

Table 3. Top 10 Articles with the Highest Number of Citations

Results

At this point, we consolidate the results obtained from the literature review and proceed to answer the research questions posed, addressing the 5 questions raised in the study.

Q1: What Are the Methods Used in the Teaching-Learning Process of Primary Mathematics?

Teaching-learning methods refer to the various pedagogical approaches employed by teachers to facilitate the learning process in students. Table 4 compiles and describes the methods employed by the authors in teaching mathematics to elementary school students.

Reference	Methods	Observations
(Liu et al., 2024);	Game-based learning	According to the authors, game-based learning is an
(Andriyani, 2023);		educational methodology that employs game elements and
(Cheng et al., 2023);		dynamics to enhance teaching, integrating playful
(Hwang, Chiu, et al.,		activities that facilitate the acquisition of knowledge and
2023); (Fernández-		skills through practice.
Oliveras et al., 2021);		
(Chang & Yeh, 2021)		

Table 4. Methods Used in Teaching-Learning Processes

		consists of mixing predefined clocks together to form
		programs.
(Rati et al., 2023)	Project Based Learning	This approach focuses on the completion of a practical,
		real-world project to acquire knowledge and skills. It
		consists of students working in teams to solve an assigned
		problem or challenge.
(Yang & Lin, 2024)	Method based on	This approach uses diagrams and visual tools to organize
	graphic organizers	and understand information. It consists of using different
		types of diagrams, such as mind maps and flow charts, to
		facilitate the understanding of abstract concepts.
(Nadzri et al., 2023)	Augmented Reality	This approach uses technology to superimpose digital
	Based Learning	information on the real world by interacting with physical
		objects or real environments enhanced with virtual
		elements.
(Hwang, Chen, et al.,	Two-tier approach	This approach involves the use of first and second level
2023)	based on graphic	questions. First-level questions are basic, while second-
	organizers	level questions are more complex and seek deeper
		understanding.
(YH. Lin et al.,	Model 6E	It is a sequential teaching approach that combines science
2023)		education and engineering design processes. It consists of
		six stages: engage, explore, explain, design, enrich and
		evaluate.
(Sáez-López et al.,	Gamification	According to several authors, this approach uses game
2023); (Binti		design elements and techniques in non-game contexts to
Kamarudin et al.,		engage people. It consists of applying and using game
2022); (Murillo-		mechanics, such as points, levels, challenges and rewards,
Zamorano et al.,		in non-game contexts.
2023); (Rincon-		
Flores et al., 2023)		
(Zainil et al., 2024)	Blended learning	It is an approach that combines face-to-face teaching with

Observations

Block-based programming uses graphical blocks to create

programs visually, eliminating the need to write code. It consists of linking predefined blocks together to form

It is an approach that combines face-to-face teaching with online teaching. It consists of integrating classroom classes with digital materials. It is used by allowing students to access online content at their own pace.

Methods

Block-based

programming

Reference

2024)

(Dahshan & Galanti,

Reference	Methods	Observations
(Nindiasari et al.,	STEAM approach	It is an approach that begins with the exploration of
2024)	(Science, Technology,	STEAM concepts, followed by experimentation through
	Engineering, Art and	testing and hands-on activities, and culminates in the
	Mathematics)	creation of original projects.
(Nadarajan et al.,	Flipped classroom	The teaching approach where students learn the material
2023)		outside of the classroom and use class time for discussion,
		consisting of reversing traditional classroom activities.
(Herwinarso et al.,	Research-based	This approach engages students in active problem
2023)	learning	investigation. It consists of students formulating questions,
		designing and conducting investigations, analyzing data,
		and reaching conclusions, all under the guidance of the
		teacher.
(Sook Ling &	Multimedia learning	This approach uses a variety of media and technologies,
Krishnasamy, 2023)		such as images, audio, video and interactive graphics. It
		consists of the integration of these elements to improve
		comprehension and retention of information.
(Wang et al., 2023)	Conceptual connections	This approach is based on relating different concepts in
		order to foster a deeper understanding; students are
		expected to relate what they learn to previous knowledge.
(Topali &	Constructivist approach	It consists of student-centered learning, where exploration,
Mikropoulos, 2023);		discovery and reflection are encouraged. It is used in
(Bevan & Capraro,		education by promoting practical and collaborative
2021); (Yu, 2022);		activities.
(Kesler et al., 2022)		
(Almulla & Al-	E-learning	The approach uses information and communication
Rahmi, 2023)		technologies to facilitate access to educational content. It
		consists of delivering classes, courses or complete
		programs through digital platforms.
(Govender &	Mathematical model	An educational approach that focuses on the use of
Machingura, 2023)		mathematical models to understand and solve problems in
		various fields of knowledge. It consists of using
		mathematical tools, such as equations.
(Wicaksono &	Interactive learning	Learning approach in which students interact with the
Rahmatya, 2023)		content, such as 3D geometric objects with shapes and
		colors.

Reference	Methods	Observations
(Safitri et al., 2022)	Digital game-based	This approach uses video games and other digital media to
	learning	motivate students to learn. It consists of integrating game
		elements, such as challenges, competitions, etc.
(Atin et al., 2022)	ARCS Learning Model	This approach addresses attention, content relevance, self-
		confidence and student satisfaction. It consists of the
		application of these four strategies to improve motivation.
(Ziden et al., 2022)	M-learning	An approach to learning through the use of mobile
		devices. It consists of offering educational content on
		mobile devices such as smartphones or tablets, and is
		characterized by mobility.
(Chen et al., 2022)	Inquiry approach	It is a pedagogical approach that promotes in students the
		ability to ask questions, seek answers, conduct research,
		analyze information and reach conclusions.
(Hsu et al., 2022)	Socratic Reflection	SRPs consist of a series of questions that are used to guide
	Prompts (SRPs)	the student through the critical thinking process, including
		interpretation, analysis, evaluation, inference, explanation,
		and self-regulation.
(Setambah et al.,	Fraction encryption	This method is used to improve the teaching and learning
2021)	method	of fractions. It consists of the use of a set of cipher
		symbols that replace conventional numbers and signs.

Q2: What are the factors that influence the construction of teaching-learning systems?

The factors are a wide range of elements that must be considered when designing, implementing and evaluating these systems. Table 5 compiles the factors that the authors indicate as influential in the construction of teaching-learning systems in their proposals. Only those elements that contribute significantly to the development and effectiveness of these systems are indicated.

References	Factors	Observation
(Kyprianou et al., 2023)	Confidence of	Educators' trust facilitates the adoption and regular
	educators	use of the system, promoting continuous and
		constructive feedback. Lack of trust can generate
		resistance and suboptimal use, limiting the positive
		impact on learning.
(Kyprianou et al., 2023)	Previous experience	Previous experience allows a quick adaptation to the
		new system, optimizing its use and integration. Lack
		of experience requires greater investment in training,

Table 5. Influencing Factors in the Construction of Teaching-Learning Systems

References	Factors	Observation
		delaying adoption and reducing initial effectiveness.
(Liu et al., 2024)	Pedagogical technological knowledge (TPACK)	TPACK knowledge combines technology, pedagogy and content; lack of TPACK can result in a technically advanced, but pedagogically deficient system.
(Rati et al., 2023); (Zainil et al., 2024); (Zhussupbayev et al., 2023); (Koskinen & Pitkäniemi, 2022); (Sandoval Henríquez & Badilla Quintana, 2021)	Curriculum design	It is a factor that establishes the learning objectives, contents and methodologies that guide teaching. A solid design guarantees a positive impact on the effectiveness and relevance of the system.
(Andriyani, 2023); (Zhussupbayev et al., 2023); (Atin et al., 2022); (Zholaushievna et al., 2022).	Interactive designs	It is a factor that influences the effectiveness and usability of the system. An attractive design can increase learner motivation and engagement, positively impacting the experience.
(Hwang, Chen, et al., 2023); (Videla et al., 2022)	Customization	This is a fundamental factor since the lack of personalization can lead to a system that does not adjust to individual needs, limiting its effectiveness in learning.
(Hwang, Chen, et al., 2023); (YR. Lin, 2023); (Sandí- Delgado et al., 2022)	Ease of use	An easy-to-use system requires little or no prior training, allowing users to use it effectively from the start, enhancing the user experience and increasing the likelihood that the system will be used effectively.
(YH. Lin et al., 2023)	Available resources	This is an influencing factor as a larger budget may allow for more advanced features and more sophisticated design. Lack of resources may limit development capacity.
(YH. Lin et al., 2023); (Saal & Graham, 2023)	Adaptability	A highly adaptable system can adjust its content, difficulty and methodology, improving the relevance and effectiveness of the software. In addition, lack of adaptability can limit its effectiveness.
(Nagy & Dringó-Horváth, 2024); (Saal & Graham, 2023)	Digital competence	It is a factor since it is crucial for developers to take advantage of available technologies and ensure the quality of the software, positively impacting its effectiveness.
(Nagy & Dringó-Horváth, 2024);	Institutional support	Strong support can facilitate integration and acceptance of the system, encouraging educational

References	Factors	Observation
		innovation, while lack of support can hinder
		implementation and generate resistance.
(Balanyà Rebollo & De	Solid infrastructure	A solid infrastructure, including hardware, networks
Oliveira, 2023); (Yu, 2022)		and content management systems, facilitates the
		implementation and operation of the system,
		positively impacting its effectiveness.
(Balanyà Rebollo & De	Educational policies	Educational policies that encourage technological
Oliveira, 2023); (Hu & Hu,		innovation, the integration of digital tools, and
2022)		teacher training in educational technology can
		facilitate the adoption and use of the system.
(Balanyà Rebollo & De	Pedagogical	They determine the presentation of information,
Oliveira, 2023); (Ding, 2022)	strategies	stimulate participation and facilitate student
on (on a, 2020), (ong, 2022)	StrateBres	understanding, impacting the system's ability to
		maintain student interest and motivation.
(Hwang, Chiu, et al., 2023);	Learning objectives	They guide the design and development of the
(Topali & Mikropoulos,		teaching-learning system by establishing the
2023); (Binti Kamarudin		educational goals that are expected to be achieved.
et al., 2022); (Pardamean		These objectives ensure that the system focuses on
et al., 2022), (Pardamean et al., 2022)		the desired outcomes, impacting effectiveness.
	Contant	
(Hwang, Chiu, et al., 2023);	Content	It is a key factor as it determines the subject matter
(Sook Ling & Krishnasamy,		and depth of the educational materials. Relevant and
2023); (Almulla & Al-Rahmi,		appropriate content improves the quality of the
2023); (Binti Kamarudin		system and its ability to meet learning objectives.
et al., 2022); (Murillo-		
Zamorano et al., 2023);		
(Zholaushievna et al., 2022);		
(Sujarwo et al., 2022);		
(Sandoval Henríquez &		
Badilla Quintana, 2021)		
(Hu & Hu, 2022); (Safitri	Feature integration	The integration of different resources, such as: texts,
et al., 2022)		images, videos, simulations and interactive activities,
		in the teaching-learning system enriches the learning
		experience.
(YR. Lin, 2023); (Almulla	Navigation	Clear and consistent navigation is essential to
& Al-Rahmi, 2023)		facilitate exploration and effective use of the system,
		which positively impacts the students' learning
		experience.
(Alonso-Secades et al., 2022)	Educational needs	A key factor since each educational community has
		specific needs that must be considered to ensure

References	Factors	Observation
		quality education.
(Hsu et al., 2022)	Animations	Important visual factor as they are used for an
		interactive and attractive presentation of problems or
		questions. By combining verbal and graphical
		aspects, they can improve information retention.

Q3: What Technologies Are Used in the Construction of Mathematics-Oriented Teaching-Learning Systems?

Technologies are the tools, platforms and digital resources used to develop and implement these systems. Table 6 presents the most common technologies used in the construction of mathematics-oriented teaching-learning systems. It includes those technologies that the authors consider fundamental for the effective development of these systems, highlighting their relevance in the creation of interactive and enriching educational environments.

Reference	Technologies	Observations		
(Liu et al., 2024)	CPSLens	CPSlens is an augmented reality platform used in		
		teaching-learning systems. It allows teachers to observe		
		students' critical thinking skills.		
(Dahshan & Galanti,	Scratch	Visual programming language with an environment		
2024); (Yang & Lin,		based on graphical blocks. It is a tool to teach students		
2024); (Cheng et al.,		the basic concepts of programming and mathematics.		
2023); (Topali &				
Mikropoulos, 2023);				
(Kesler et al., 2022)				
(Dahshan & Galanti, 2024)	Digital Interactive	Digital interactive notebooks allow students to create		
	Notebooks (DINbs)	and organize learning content. They are used in		
		teaching-learning systems to facilitate organization,		
		access and interaction with educational content.		
(Hwang, Chen, et al.,	Spherical Video	Educational environments with 360-degree videos offer		
2023); (Sandoval	Based Learning	an immersive experience. They allow students to		
Henríquez & Badilla	Environments	explore virtually, simulating real situations, improving		
Quintana, 2021)	(SVLE)	understanding and retention of concepts.		
(Rati et al., 2023)	Google Meet,	Google Meet, WhatsApp Group and Zoom are digital		
	WhatsApp Group,	communication technologies. Google Meet facilitates		
	Zoom Cloud	meetings, WhatsApp Group enables instant		
	Meetings	communication, and Zoom offers screen sharing and		
		recording, popular in education.		

Table 6. Technologies Used in the Construction of Teaching-Learning Systems

Reference	Technologies	Observations
(Nadzri et al., 2023)	GeomAR3	Module with augmented reality to improve the learning
		of spatial concepts in mathematics. It uses AR to
		visualize characteristics of shape, length, size and
		dimensions of 3D figures that are controlled.
(YH. Lin et al., 2023);	Virtual reality (VR)	It is a technology that creates an interactive digital
(Silva-Díaz et al., 2023);		environment that simulates the physical presence of
(Tursynkulova &		users in a real or imaginary environment. It consists of
Madiyarov, 2023);		the use of devices such as virtual reality glasses or
(Nindiasari et al., 2024);		helmets to immerse users in a three-dimensional
(Zholaushievna et al.,		environment.
2022); (Sandoval		
Henríquez & Badilla		
Quintana, 2021)		
(Sáez-López et al., 2023)	Kahoot	Platform used to create interactive educational quizzes,
		surveys and games. It consists of an online tool where
		teachers can create sets of multiple-choice questions.
(Sáez-López et al., 2023);	Socrative	Tool that allows the teacher to track the evolution of
(Chang & Yeh, 2021)		students through quizzes, assessments or other activities
		focusing more on games and competitions in real time.
(Tursynkulova &	Augmented Reality	Technology that superimposes virtual elements, such as
Madiyarov, 2023); (Ziden	(AR)	images, videos or information, on the real world.
et al., 2022); (Sandoval	()	Through devices such as smartphones or special glasses
Henríquez & Badilla		users can see and interact with these combined elements
Quintana, 2021)		
	RPG Maker	Role-playing game (RPG) creation tool that allows user
(11, ulig, ellia, et al., 2020)	Tri O munor	to design and develop their own role-playing games.
(Naveed et al., 2023)	Cloud computing	Network of remote servers connected to the Internet to
(11000000000000000000000000000000000000	cloud computing	store, manage and process data, servers, databases,
		networks and software.
(Wicaksono & Rahmatya,	OpenCV (Open-	Open-source computer vision and machine learning
2023)	Source Computer	software library.
2025)	Vision Library)	software norary.
Wiceksone & Dehmetre	TensorFlow Lite	Cross-platform machine learning library optimized for
(Wicaksono & Rahmatya,	Tensorriow Lite	running machine learning models on perimeter devices,
2023)		
Wiegksong & Debugtur	Daenharry D	including iOS and Android mobile devices.
(Wicaksono & Rahmatya,	Raspberry Pi	Single-board computers or low-cost single-board
2023) (Binner Flance et al.	Comitl	computers
(Rincon-Flores et al.,	Gamit!	Interactive digital gamification platform designed for
2023)		teachers and students, using a reward system based on

Reference	Technologies	Observations
		badges, avatars and rankings.
(Moral-Sánchez et al.,	Classcraft	Tool to turn the classroom into an online educational
2022)		role-playing game, in which both students and teachers
		play together.
(Sandí-Delgado et al.,	AstroCódigo	Platform to help understand the basic concepts of
2022)		programming, through problem solving by creating
		algorithms.
(Safitri et al., 2022)	Word-wall	Web platform that facilitates the creation of learning
		games based on mini-games. Allows teachers to design
		interactive games and printed materials for their
		students.
(Yu, 2022)	QuARKS	This tool allows students to generate multiple-choice
		questions and accompany them with self-generated
		explanations, either in text or multimedia format.
(Alonso-Secades et al.,	Inteligencia	The set of technologies that enable machines to learn,
2022)	artificial (AI)	reason and perform tasks that, until now, could only be
		performed by humans.
(Alonso-Secades et al.,	Big data	A set of technologies that allows the collection, storage
2022)		and processing of large volumes of data. From this data,
		conclusions and patterns are drawn to improve process
		efficiency.
(Chen et al., 2022)	WILM-CDRASS	Inquiry-based learning platform specifically designed to
		help elementary school students develop online
		information evaluation skills.

Q4: Which Methods Are the Most Efficient in the Mathematics-Oriented Teaching-Learning Process?

Table 8 below presents a general analysis of the efficiency of the methods used, proposed by the authors in the teaching-learning processes. These methods have proven to have an impact on the improvement of students' understanding and performance in mathematics. Those that clearly present the results obtained or the levels of efficiency achieved have been included.

A classification system has been established in three levels of efficiency to evaluate the impact of various methods on students' academic performance in mathematics, the results indicated by the authors are analyzed and the percentage of improvement is determined according to the method used. An inefficient level (<30% improvement) is considered where the methods used have limited effectiveness in the understanding and application of concepts. The efficient level (30-50% improvement) includes methods with moderate improvement and considerable effectiveness. Finally, the very efficient level (>50% improvement) includes methods with significant improvements. Table 7 shows this rubric.

Efficiency Criterion (Performance Improvement)	Description
Inefficient (<30%)	The method shows minimal or no improvement in
	academic performance.
Efficient (30-50%)	The method shows a significant improvement in
	academic performance.
Very Efficient (>50%)	The method shows a significant improvement in
	academic performance.

Table 7.	Efficiency	Evaluation	Rubric
1 4010 / .	Differency	Diananion	reactive

Reference	Method	Valuation	Observations
(Liu et al., 2024);	Game-based	Efficient	The authors point out that the method increases
(Andriyani, 2023);	learning		student participation and collaboration; in the
(Cheng et al., 2023);			case of understanding geometric shapes,
(Hwang, Chiu, et al.,			improvements of more than 50% were
2023); (Fernández-			observed, but its impact on other similar topics
Oliveras et al., 2021);			was not notable with only 15% improvements.
(Chang & Yeh, 2021)			
(Dahshan & Galanti,	Block-based	Very	The authors mention in the results that, by using
2024)	programming	efficient	this method through the Scratch tool, 75% were
			able to understand and correctly apply the
			representation of numbers and place value.
(Rati et al., 2023)	Project Based	Inefficient	According to the authors, the results obtained
	Learning		when using the method in an experimental
	C		group of students with another group that used a
			traditional method, the improvement was only
			18.8%.
(Yang & Lin, 2024)	Method based	Inefficient	According to the authors, the results obtained
	on graphic		using this method in the tests only showed an
	organizers		improvement of 10% in comparison with other
			students.
(Hwang, Chen, et al.,	Two-level	Inefficient	The authors mention that the results showed that
2023)	approach based		the group of students who received this new
	on graphic		form of teaching obtained, on average, a 15%
	organizers		increase in their test results after applying it.
(YH. Lin et al., 2023)	Model 6E	Efficient	According to the authors, the 6E approach led to
			superior performance, with an adjusted mean of
			78.476, versus the group without such an

Table 8. Efficiency Level of Methods Used

Reference	Method	Valuation	Observations
			approach (mean of 59.788), an improvement of
			31.15%.
(Sáez-López et al.,	Gamification	Efficient	The authors point out that this method in the
2023); (Binti			case of calculus, problem posing and problem
Kamarudin et al.,			solving, improvements of more than 30% were
2022); (Murillo-			observed. In addition to highlighting other
Zamorano et al., 2023);			aspects such as reducing the level of depression,
(Rincon-Flores et al.,			anxiety and stress.
2023)			
(Safitri et al., 2022)	Digital game-	Efficient	The authors note that the method produced
	based learning		significant improvements in students, with an
			average increase of 30% in academic
			performance.
(Atin et al., 2022)	ARCS Learning	Efficient	The authors concluded that the use of this
	Model		method in the mathematics application showed
			results with a 42% increase in student
			comprehension.
(Topali &	Constructivist	Very	The method demonstrated significant
Mikropoulos, 2023);	approach	efficient	improvements in students' mathematical skills,
(Bevan & Capraro,			outperforming conventional methods, with
2021); (Yu, 2022);			improvements of more than 50% in
(Kesler et al., 2022)			performance and flexibility in basic operations.
(Ziden et al., 2022)	M-learning	Inefficient	The authors observed significant improvements
			when using mobile learning with augmented
			reality, with a 16.4% increase in motivation and
			16.7% increase in post-test scores.
(Chen et al., 2022)	Inquiry	Efficient	The authors found that the use of the WILM-
	approach		CDRASS program improved students' academic
			performance by 44.53%, according to the
			results mentioned in the study.
(Hsu et al., 2022)	Socratic	Inefficient	The authors note that only a 15.5%
	Reflection		improvement in academic performance was
	Prompts (SRPs)		achieved in post-test scores compared to the
			pre-test.
(Setambah et al., 2021)	Method of	Inefficient	The authors concluded that the use of the
	teaching with		Fractions cipher showed minimal improvement
	fractional		in student learning, with only a 4.2% increase in
	coding		mathematical achievement.

Q5: Which Technologies Are More Efficient In The Construction Of A Mathematics-Oriented Teaching-Learning System?

Table 9 specifies the technologies used in the development of educational teaching-learning systems according to the authors, based on the research carried out, the efficiency of these technologies is classified into three levels: Inefficient, Efficient and Very Efficient. To determine these levels, aspects such as ease of implementation, compatibility, adaptability, integration, scalability, among others, were considered.

Reference	Technologies	Efficiency	Observations
(Liu et al., 2024)	CPSLens	Very	According to the authors, it was successfully
		efficient	implemented to evaluate the collaborative problem-
			solving process of students due to its ability to
			facilitate the evaluation of the process, allowing a
			real-time record, to assess the students' ability.
(Dahshan & Galanti,	Scratch	Efficient	According to the authors, this tool is efficient in the
2024); (Yang & Lin,			construction of the system because of its accessible
2024); (Cheng et al.,			interface, facilitating the development of
2023); (Topali &			mathematical thinking through interaction with
Mikropoulos, 2023);			customizable blocks and sprites, but prior
(Kesler et al., 2022)			knowledge or training is needed to use it.
(Dahshan & Galanti,	Digital	Very	The authors mention that the DINbs allowed for an
2024)	Interactive	efficient	organized documentation of teachers' interaction
	Notebooks		with Scratch programs and their reflections, which
	(DINbs)		facilitated the collection of detailed qualitative data.
(Rati et al., 2023)	Google Meet,	Efficient	According to the authors, these 3 tools proved to be
	WhatsApp		effective in the construction of the system, because
	Group		it is easy to implement, allowed interaction and
	(WAG), y		collaboration between students and teachers,
	Zoom Cloud		enabled group chat activities, sharing of educational
	Meetings		materials and collaborative activities.
(Nadzri et al., 2023)	GeomAR3	Very	According to the authors, GeomAR3 was effective
		efficient	in building the system and improving students'
			understanding of geometric shapes. Classroom
			implementation was feasible and teachers needed
			little training to use the tool.
(Hwang, Chen, et al.,	Spherical	Efficient	According to the authors, SVLE was successfully
2023); (Sandoval	Video Based		implemented and was considered an efficient
Henríquez & Badilla	Learning		technology to build the system. Teachers found it
Quintana, 2021)	Environments		easy to use and expressed a positive reception.

Table 9. Efficiency of Technologies in Teaching-Learning Systems

Reference	Technologies	Efficiency	Observations
	(SVLE)		Although there were suggestions for improvement,
			such as the need for patience when using it, it was
			generally well received.
(YH. Lin et al.,	Virtual	Very	The authors conclude that VR is very efficient in
2023); (Silva-Díaz	Reality (VR)	efficient	the construction of the system, as it lies in its ability
et al., 2023);			to provide immersive and hands-on educational
(Tursynkulova &			experiences, VR facilitated experimentation and
Madiyarov, 2023);			problem solving in a safe environment.
(Nindiasari et al.,			
2024);(Zholaushievna			
et al., 2022);			
(Sandoval Henríquez			
& Badilla Quintana,			
2021)			
(Sáez-López et al.,	Kahoot	Efficient	According to the authors, it is efficient because of
2023)			its widespread use and ease of access to implement
			it. However, its efficiency may vary depending on
			the educational context and the teacher's ability to
			integrate it.
(Sáez-López et al.,	Socrative	Efficient	The authors mention that Socrative stands out for
2023); (Chang &			its ability to assess student learning quickly and
Yeh, 2021)			easily, making it a valuable tool for teachers.
			However, its effectiveness may depend on the
			technological infrastructure available.
(Tursynkulova &	Augmented	Very	According to the authors, augmented reality (AR)
Madiyarov, 2023);	Reality (AR)	efficient	stood out for transforming abstract geometric
(Ziden et al., 2022);			concepts into interactive experiences, enriching
(Sandoval Henríquez			teaching by turning the theoretical into the tangible.
& Badilla Quintana,			The implementation was carried out using mobile
2021)			devices with embedded sensors.
(Hwang, Chiu, et al.,	RPG Maker	Very	According to the studio, RPG Maker was efficient
2023)		efficient	in building the TT-DGA system due to its user-
			friendly interface, which allowed designers to
			create the game environment and levels without the
			need for advanced programming skills.
(Naveed et al., 2023)	Cloud	Efficient	The combination of cloud computing and mobile
	computing		technology proved efficient in building the system,
			allowing flexible access to educational resources
			and enhancing the user experience.

Reference	Technologies	Efficiency	Observations
(Wicaksono &	Raspberry Pi,	Very	The technologies used were efficient: Raspberry Pi
Rahmatya, 2023)	OpenCV,	efficient	as the main brain, OpenCV to detect colors in
	TensorFlow		images, and TensorFlow Lite to detect shapes in
	Lite		geometric objects.
(Rincon-Flores et al.,	Gamit!	Efficient	The authors highlight the efficiency of Gamit! for
2023)			its gamified reward system that modifies the
			learning environment. In addition, the platform
			maintains anonymity in class rankings,
			demonstrating attention to student privacy.
(Moral-Sánchez	Classcraft	Very	The authors mention that Classcraft is considered
et al., 2022)		efficient	an efficient technological tool due to several
····, · ,			factors. First, its implementation and use were
			perceived as relatively simple, which facilitated its
			adoption in the classroom. In addition, the platform
			offered a number of resources and features that
			complemented the flipped learning model.
(Safitri et al., 2022)	Word-wall	Efficient	The authors mention that Word-Wall is an efficient
(Ballul et al., 2022)	word-warr	Lincicia	technology for the construction of the system. It is
			an attractive and flexible tool for creating
			educational games that integrate word walls, a forn
			of visual teaching that associates key words with
			their definitions or reference images.
(V., 2022)	OWARKS	Efficient	
(Yu, 2022)	QuARKS	Efficient	According to the author, the tool was efficient for
			construction by facilitating the generation of
			questions and explanations. The multimedia
			elements enriched learning and motivated students
(Alense Seeder	AL Dia Jata	Varia	to explain questions from their peers.
(Alonso-Secades	AI, Big data	Very	The authors conclude that artificial intelligence (Al
et al., 2022)		efficient	and Big Data were effective in building the system
			enabling the implementation of predictive and
			machine learning algorithms, as well as the
			management and analysis of large volumes of data
			to provide personalized recommendations.
(Chen et al., 2022)	WILM-	Efficient	According to the authors, it was efficient because i
	CDRASS		facilitated the effective application of the principles
			of information evaluation through the collaborative
			annotation tool, promoting a critical and detailed
			analysis of online information.

Discussion and Conclusion

The methods identified as efficient in teaching mathematics are: block-based programming, game-based learning, gamification, the constructivist approach, the ARCS learning model, the 6E model, digital game-based learning and the inquiry approach. These methods focus on active student participation, practical application of mathematical concepts, and the development of critical thinking and problem-solving skills. Block-based programming is considered very efficient, but it is only evidenced that it was used once and the constructivist approach that was used 4 times, unlike other methods that were only efficient, but were used more times such as game-based learning with 6 and gamification with 5, with the recurrent frequency of these 2 methods it could be said that they are considered effective and versatile methods to address multiple challenges in the teaching of mathematics.

With respect to the factors that influence the construction of teaching-learning systems, they are diverse and decisive. Those that stand out the most are: curricular design, interactive designs, personalization, ease of use, adaptability, digital competence, solid infrastructure, educational policies, pedagogical strategies, learning objectives, content, integration of features and navigation. These factors, when considered holistically, are essential to the development of these effective and successful systems. Among them, content was the most mentioned factor with 8 times, therefore, it could be said that the importance of a well-structured and adapted content is valued to facilitate understanding and learning, being fundamental for the success of teaching-learning systems.

Regarding the technologies used in the construction of educational systems for teaching-learning mathematics, a wide range is observed, including Scratch, Virtual Reality (VR), Augmented Reality, Socrative and Spherical Video-based Learning Environments (SVLE). Scratch stood out by being mentioned in 5 papers, indicating its effectiveness, particularly in the understanding of positional values, arithmetic operations, among others. On the other hand, technologies such as CPS Lens, Digital Interactive Notebooks, GeomAR3, RPG Maker, Raspberry Pi, OpenCV, TensorFlow Lite, Classcraft, and AI, Big Data were mentioned only once, suggesting that, although they could be efficient their use has not been as wide as Scratch. In this sense, it is important to consider the possibility that these technologies have not yet been further explored to determine their true potential in improving the teaching-learning process. With respect to Virtual Reality (VR) was the most used technology, mentioned in 6 papers, indicating its potential in education, especially in geometry. However, its application in other mathematical areas seems to be less developed, suggesting a need for further research.

Based on the literature review and data analysis collected, several key conclusions related to methods and technologies in mathematics-oriented teaching-learning processes have been drawn. The variety of methods identified, such as gamification, game-based learning, block-based programming, and the constructivist approach, underscores the diversity of strategies employed to enhance mathematics instruction. This diversity reflects an adaptive, learner-centered approach, seeking different ways to engage learners and facilitate understanding of complex mathematical concepts.

In addition, evidence suggests that gamification and game-based learning are highly effective, given their positive impact on learner motivation and engagement. Although block-based programming and the constructivist approach have also been shown to be efficient, the frequency of use of gamified methods suggests that they are preferred for their ability to make learning more interactive and engaging. On the other hand, the identification of factors such as curriculum design, interactivity, personalization and ease of use highlights the importance of careful planning and adaptation to the needs of learners. These essential factors ensure that teaching-learning systems are not only effective, but also accessible and relevant, promoting an inclusive and stimulating educational environment.

As for the featured technologies, including scratch, VR and SVLE, they show how innovative tools are being integrated to improve mathematics education. The prevalence of scratch and VR suggests their effectiveness and popularity in teaching, while the diversity of other technologies indicates a continued exploration of new solutions to enhance student learning and interaction with mathematical concepts. In particular, they indicate that technologies such as scratch and virtual reality are particularly efficient, given their ability to facilitate the understanding of mathematical concepts and their widespread use in education. The effectiveness of these technologies can be attributed to their ability to provide immersive and interactive learning experiences that enhance student engagement and knowledge retention.

References

- Almulla, M. A., & Al-Rahmi, W. M. (2023). Integrated Social Cognitive Theory with Learning Input Factors: The Effects of Problem-Solving Skills and Critical Thinking Skills on Learning Performance Sustainability. *Sustainability*, 15(5), 3978. https://doi.org/10.3390/su15053978
- Alonso-Secades, V., López-Rivero, A.-J., Martín-Merino-Acera, M., Ruiz-García, M.-J., & Arranz-García, O. (2022). Designing an Intelligent Virtual Educational System to Improve the Efficiency of Primary Education in Developing Countries. *Electronics*, 11(9), 1487.
- Andriyani, A. (2023). Stimulation of Cognitive and Psychomotor Capability by Game-Based Learning with Computational Thinking Core. *Mathematics Teaching-Research Journal*, *15*(5), 76-104. Scopus.
- Atin, S., Syakuran, R. A., & Afrianto, I. (2022). Implementation of Gamification in Mathematics m-Learning Application to Creating Student Engagement. *International Journal of Advanced Computer Science and Applications*, 13(7). https://doi.org/10.14569/IJACSA.2022.0130765
- Baas, J., Schotten, M., Plume, A., Côté, G., & Karimi, R. (2020). Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. *Quantitative Science Studies*, 1(1), 377-386. https://doi.org/10.1162/qss_a_00019
- Balanyà Rebollo, J., & De Oliveira, J. M. (2023). Teachers' Evaluation of the Usability of a Self-Assessment Tool for Mobile Learning Integration in the Classroom. *Education Sciences*, 14(1), 1.
- Bevan, D., & Capraro, M. M. (2021). Posing Creative Problems: A Study of Elementary Students' Mathematics Understanding. *International Electronic Journal of Mathematics Education*, 16(3), em0654.
- Binti Kamarudin, N. A., Raja Ikram, R. R. B., Binti Azman, F. N., Syed Ahmad, S. S., & Bin Zainuddin, D.(2022). A Study of The Effects of Short-Term AI Coding Course with Gamification Elements on

Students' Cognitive Mental Health. TEM Journal, 1854-1862. https://doi.org/10.18421/TEM114-53

- Chang, W.-L., & Yeh, Y. (2021). A blended design of game-based learning for motivation, knowledge sharing and critical thinking enhancement. *Technology, Pedagogy and Education*, 30(2), 271-285. https://doi.org/10.1080/1475939X.2021.1885482
- Chen, C.-M., Li, M.-C., & Chen, Y.-T. (2022). The effects of web-based inquiry learning mode with the support of collaborative digital reading annotation system on information literacy instruction. *Computers & Education*, 179, 104428. https://doi.org/10.1016/j.compedu.2021.104428
- Cheng, Y.-P., Lai, C.-F., Chen, Y.-T., Wang, W.-S., Huang, Y.-M., & Wu, T.-T. (2023). Enhancing student's computational thinking skills with student-generated questions strategy in a game-based learning platform. *Computers & Education*, 200, 104794. https://doi.org/10.1016/j.compedu.2023.104794
- Christou, A. I., Tsermentseli, S., & Drigas, A. (2023). The Role of Mobile Games and Environmental Factors in Improving Learning and Metacognitive Potential of Young Students. *International Journal of Interactive Mobile Technologies (iJIM)*, 17(18), 67-84. https://doi.org/10.3991/ijim.v17i18.42437
- Dahshan, M., & Galanti, T. (2024). Teachers in the Loop: Integrating Computational Thinking and Mathematics to Build Early Place Value Understanding. *Education Sciences*, *14*(2), 201.
- Ding, F. (2022). Supporting Adaptive English Learning With Fuzzy Logic-Based Personalized Learning: International Journal of Gaming and Computer-Mediated Simulations, 14(2), 1-19.
- Fernández-Oliveras, A., Espigares-Gámez, M. J., & Oliveras, M. L. (2021). Implementation of a Playful Microproject Based on Traditional Games for Working on Mathematical and Scientific Content. *Education Sciences*, 11(10), 624. https://doi.org/10.3390/educsci11100624
- Govender, R., & Machingura, D. (2023). Ascertaining Grade 10 learners' levels of mathematical modelling competency through solving simultaneous equations word problems. *Pythagoras*, 44(1). https://doi.org/10.4102/pythagoras.v44i1.728
- Herwinarso, Koswojo, J., & Pratidhina, E. (2023). Development of an inquiry-based module with scientific equipment to facilitate primary school students learning the force concept. *Journal of Education and E-Learning Research*, 10(2), 314-322. https://doi.org/10.20448/jeelr.v10i2.4617
- Hoang, H. N., Hoang, T. N., Dang, H. T. T., & Nguyen, T. (2023). A Review of Studies on Math Teaching Methods. *Journal for Educators, Teachers and Trainers*, 14(2).
- Hsu, F.-H., Lin, I.-H., Yeh, H.-C., & Chen, N.-S. (2022). Effect of Socratic Reflection Prompts via video-based learning system on elementary school students' critical thinking skills. *Computers & Education*, 183, 104497. https://doi.org/10.1016/j.compedu.2022.104497
- Hu, J., & Hu, J. (2022). Teachers' Frequency of ICT Use in Providing Sustainable Opportunity to Learn: Mediation Analysis Using a Reading Database. *Sustainability*, 14(23), 15998.
- Hwang, G.-J., Chen, H.-C., Hsu, C.-Y., & Hwang, G.-H. (2023). Effects of a graphic organizer-based two-tier test approach on students' learning achievement and behaviors in spherical video-based virtual learning contexts. *Computers & Education*, 198, 104757. https://doi.org/10.1016/j.compedu.2023.104757
- Hwang, G.-J., Chiu, M.-C., Hsia, L.-H., & Chu, H.-C. (2023). Promoting art appreciation performances and behaviors in effective and joyful contexts: A two-tier test-based digital gaming approach. *Computers & Education*, 194, 104706. https://doi.org/10.1016/j.compedu.2022.104706
- Kesler, A., Shamir-Inbal, T., & Blau, I. (2022). Active Learning by Visual Programming: Pedagogical

Perspectives of Instructivist and Constructivist Code Teachers and Their Implications on Actual Teaching Strategies and Students' Programming Artifacts. *Journal of Educational Computing Research*, 60(1), 28-55. https://doi.org/10.1177/07356331211017793

- Koskinen, R., & Pitkäniemi, H. (2022). Meaningful Learning in Mathematics: A Research Synthesis of Teaching Approaches. *International Electronic Journal of Mathematics Education*, *17*(2), em0679.
- Kyprianou, G., Karousou, A., Makris, N., Sarafis, I., Amanatiadis, A., & Chatzichristofis, S. A. (2023). Engaging Learners in Educational Robotics: Uncovering Students' Expectations for an Ideal Robotic Platform. *Electronics*, 12(13), 2865. https://doi.org/10.3390/electronics12132865
- Lavidas, K., Apostolou, Z., & Papadakis, S. (2022). Challenges and Opportunities of Mathematics in Digital Times: Preschool Teachers' Views. *Education Sciences*, 12(7), 459.
- Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux,
 P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and
 meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. *Journal of Clinical Epidemiology*, 62(10), e1-e34. https://doi.org/10.1016/j.jclinepi.2009.06.006
- Lin, Y.-H., Lin, H.-C. K., Wang, T.-H., & Wu, C.-H. (2023). Integrating the STEAM-6E Model with Virtual Reality Instruction: The Contribution to Motivation, Effectiveness, Satisfaction, and Creativity of Learners with Diverse Cognitive Styles. *Sustainability*, 15(7), 6269. https://doi.org/10.3390/su15076269
- Lin, Y.-R. (2023). An idiom-driven learning strategy to improve low achievers' science comprehension, motivation, and argumentation. *Computers & Education*, 195, 104710.
- Liu, Y., Ng, J. T. D., Hu, X., Ma, Z., & Lai, X. (2024). Adopt or abandon: Facilitators and barriers of in-service teachers' integration of game learning analytics in K–12 classrooms? *Computers & Education*, 209, 104951. https://doi.org/10.1016/j.compedu.2023.104951
- Martín-García, J., Dies Álvarez, M. E., & Afonso, A. S. (2024). Understanding Science Teachers' Integration of Active Methodologies in Club Settings: An Exploratory Study. *Education Sciences*, 14(1), 106. https://doi.org/10.3390/educsci14010106
- Moral-Sánchez, S. N., Sánchez Compaña, M. T., & Sánchez-Cruzado, C. (2022). El modelo Flipped Learning enriquecido con plataformas educativas gamificadas para el aprendizaje de la geometría. *Pixel-Bit, Revista de Medios y Educación*, 65, 149-182. https://doi.org/10.12795/pixelbit.93538
- Murillo-Zamorano, L. R., López-Sánchez, J. Á., López-Rey, M. J., & Bueno-Muñoz, C. (2023). Gamification in higher education: The ECOn+ star battles. *Computers & Education*, *194*, 104699.
- Nadarajan, K., Abdullah, A. H., Alhassora, N. S. A., Ibrahim, N. H., Surif, J., Ali, D. F., Mohd Zaid, N., & Hamzah, M. H. (2023). The Effectiveness of a Technology-Based Isometrical Transformation Flipped Classroom Learning Strategy in Improving Students' Higher Order Thinking Skills. *IEEE Access*, 11, 4155-4172. Scopus. https://doi.org/10.1109/ACCESS.2022.3230860
- Nadzri, A. Y. N. M., Ayub, A. F. M., & Zulkifli, N. N. (2023). The Effect of Using Augmented Reality Module in Learning Geometry on Mathematics Performance among Primary Students. *International Journal of Information and Education Technology*, 13(9), 1478-1486. https://doi.org/10.18178/ijiet.2023.13.9.1952
- Nagy, J. T., & Dringó-Horváth, I. (2024). Factors Influencing University Teachers' Technological Integration. *Education Sciences*, 14(1), 55. https://doi.org/10.3390/educsci14010055
- Naveed, Q. N., Qahmash, A. I., Qureshi, M. R. N., Ahmad, N., Abdul Rasheed, M. A., & Akhtaruzzaman, M.

(2023). Analyzing Critical Success Factors for Sustainable Cloud-Based Mobile Learning (CBML) in Crisp and Fuzzy Environment. *Sustainability*, *15*(2), 1017. https://doi.org/10.3390/su15021017

- Nindiasari, H., Pranata, M. F., Sukirwan, S., Sugiman, S., Fathurrohman, M., Ruhimat, A., & Yuhana, Y. (2024). The use of augmented reality to improve students' geometry concept problem-solving skills through the STEAM approach. *Infinity Journal*, 13(1), 119-138. https://doi.org/10.22460/infinity.v13i1.p119-138
- Pardamean, B., Suparyanto, T., Cenggoro, T. W., Sudigyo, D., & Anugrahana, A. (2022). AI-Based Learning Style Prediction in Online Learning for Primary Education. *IEEE Access*, 10, 35725-35735. https://doi.org/10.1109/ACCESS.2022.3160177
- Rati, N. W., Arnyana, I. B. P., Dantes, G. R., & Dantes, N. (2023). HOTS-Oriented e-Project-Based Learning: Improving 4C Skills and Science Learning Outcome of Elementary School Students. *International Journal of Information and Education Technology*, 13(6), 959-968.
- Rincon-Flores, E. G., Santos-Guevara, B. N., Martinez-Cardiel, L., Rodriguez-Rodriguez, N. K., Quintana-Cruz,
 H. A., & Matsuura-Sonoda, A. (2023). Gamit! Icing on the Cake for Mathematics Gamification. Sustainability, 15(3), 2334. https://doi.org/10.3390/su15032334
- Saal, P. E., & Graham, M. A. (2023). Comparing the Use of Educational Technology in Mathematics Education between South African and German Schools. *Sustainability*, 15(6), 4798.
- Sáez-López, J.-M., Grimaldo-Santamaría, R.-Ó., Quicios-García, M.-P., & Vázquez-Cano, E. (2023). Teaching the Use of Gamification in Elementary School: A Case in Spanish Formal Education. *Technology, Knowledge and Learning*. https://doi.org/10.1007/s10758-023-09656-8
- Safitri, D., Awalia, S., Sekaringtyas, T., Nuraini, S., Lestari, I., Suntari, Y., Marini, A., Iskandar, R., & Sudrajat, A. (2022). Improvement of Student Learning Motivation through Word-Wall-based Digital Game Media. *International Journal of Interactive Mobile Technologies (iJIM)*, 16(06), 188-205.
- Sandí-Delgado, J. C., Sanz, C. V., & Lovos, E. N. (2022). Acceptance of Serious Games to Develop Digital Competencies in Higher Education. 20(3).
- Sandoval Henríquez, F. J., & Badilla Quintana, M. G. (2021). Measuring stimulation and cognitive reactions in middle schoolers after using immersive technology: Design and validation of the TINMER questionnaire. *Computers & Education*, 166, 104157. https://doi.org/10.1016/j.compedu.2021.104157
- Setambah, M. A. B., Jaafar, A. N., Saad, M. I. M., & Yaakob, M. F. M. (2021). Fraction Cipher: A Way To Enhance Student Ability In Addition And Subtraction Fraction. *Infinity Journal*, 10(1), 81. https://doi.org/10.22460/infinity.v10i1.p81-92
- Silva-Díaz, F., Marfil-Carmona, R., Narváez, R., Silva Fuentes, A., & Carrillo-Rosúa, J. (2023). Introducing Virtual Reality and Emerging Technologies in a Teacher Training STEM Course. *Education Sciences*, 13(10), 1044. https://doi.org/10.3390/educsci13101044
- Sook Ling, L., & Krishnasamy, S. (2023). Information Technology Capability (ITC) Framework to Improve Learning Experience and Academic Achievement of Mathematics in Malaysia. *Electronic Journal of E-Learning*, 21(1), 36-51. https://doi.org/10.34190/ejel.21.1.2169
- Sujarwo, Herawati, S. N., Sekaringtyas, T., Safitri, D., Lestari, I., Suntari, Y., Umasih, Marini, A., Iskandar, R., & Sudrajat, A. (2022). Android-Based Interactive Media to Raise Student Learning Outcomes in Social Science. *International Journal of Interactive Mobile Technologies (iJIM)*, 16(07), 4-21.
- Topali, P., & Mikropoulos, T. A. (2023). Scratch-based learning objects for novice programmers: Exploring

quality aspects and perceptions for primary education. *Interactive Learning Environments*, *31*(7), 4219-4234. https://doi.org/10.1080/10494820.2021.1956546

- Tursynkulova, E., & Madiyarov, N. (2023). Applying Dynamic Geometry Environment Software as a Visualization Tool for Teaching Planimetry Construction Tasks. *International Journal of Information* and Education Technology, 13(12), 1950-1958. https://doi.org/10.18178/ijiet.2023.13.12.2009
- Videla, R., Rossel, S., Muñoz, C., & Aguayo, C. (2022). Online Mathematics Education during the COVID-19 Pandemic: Didactic Strategies, Educational Resources, and Educational Contexts. *Education Sciences*, 12(7), 492. https://doi.org/10.3390/educsci12070492
- Wang, Y., Wang, J., Raymond, F., & Wang, J. (2023). Elementary pre-service teachers' horizon knowledge for teaching addition and subtraction: An analysis of video presentations. *Eurasia Journal of Mathematics, Science and Technology Education*, 19(6), em2276. https://doi.org/10.29333/ejmste/13202
- Wicaksono, M. F., & Rahmatya, M. D. (2023). 3D Geometric Shape and Colors Interactive Learning Media using Raspberry Pi, OpenCV, and TensorFlow Lite. *International Journal on Advanced Science, Engineering* and Information Technology, 13(5), 1710-1718. https://doi.org/10.18517/ijaseit.13.5.18443
- Yang, T.-C., & Lin, Z.-S. (2024). Enhancing elementary school students' computational thinking and programming learning with graphic organizers. *Computers & Education*, 209, 104962.
- Yu, F.-Y. (2022). An online learning system supporting student-generated explanations for questions: Design, development, and pedagogical potential. *Interactive Learning Environments*, 30(5), 782-802.
- Zainil, M., Helsa, Y., Sutarsih, C., Nisa, S., Sartono, & Suparman. (2024). A needs analysis on the utilization of learning management systems as blended learning media in elementary school. *Journal of Education and E-Learning Research*, 11(1), 56-65. https://doi.org/10.20448/jeelr.v11i1.5310
- Zholaushievna, N. G., Abdrakhmanov, R. U. S. T. A. M., Adylbekova, E. L. V. I. R. A., & Danebekkyzy, K. G. (2022). Applying augmented and virtual reality in online and offline education. *Journal of Theoretical* and Applied Information Technology, 100(8), 2528-2541.
- Zhussupbayev, S., Nurgaliyeva, S., Shayakhmet, N., Otepova, G., Karimova, A., Matayev, B., & Bak, H. (2023). The Effect of Using Computer Assisted Instruction Method in History Lessons on Students' Success and Attitudes. *International Journal of Education in Mathematics, Science and Technology*, 11(2), 424-439. https://doi.org/10.46328/ijemst.3136
- Ziden, A. A., Ziden, A. A., & Ifedayo, A. E. (2022). Effectiveness of Augmented Reality (AR) on Students' Achievement and Motivation in Learning Science. *Eurasia Journal of Mathematics, Science and Technology Education*, 18(4), em2097. https://doi.org/10.29333/ejmste/11923

Author Information				
Harold Braulio Chirinos Timoteo	Marco Antonio Coral Ignacio			
b https://orcid.org/0009-0008-4886-6176	bttps://orcid.org/0000-0001-6628-1528			
Sedes Sapientiae Catholic University	Sedes Sapientiae Catholic University			
Peru	Peru			
Contact e-mail: 2018101870@ucss.pe				